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Unsteady #ow past a NACA 0015 aerofoil is investigated for moderate Reynolds numbers at
high angles of attack by solving the full 2-D Navier}Stokes equations with and without the
presence of free-stream turbulence (FST). The investigation focusses on the by-pass mode of
transition usually encountered in turbomachinery and wind engineering where the #ow "eld
around a blu!-body can experience very high levels of FST. In this study, a 5% level of FST is
considered. While FST is all-pervasive, its e!ect has not been studied at all theoretically. Here,
this has been made possible by proposing a new model for FST based on a moving-average
time-series and using it for long-time computation of the Navier}Stokes equations. The
statistics of the modelled FST follows the statistics of a speci"c wind tunnel. The use of this
model in conjunction with higher order upwinding, for the convection term to model the
vorticity dynamics, gives the solution a very high degree of accuracy in the by-pass transitional
#ow regime. The present study is relevant for understanding the implications of reduced order
modelling proposed for aeroelastic studies. The numerical results view the solution of the
Navier}Stokes equations not only as the output of a dynamical system in the presence of
stochastic noise (FST), but which also produces the intermittency factor in and around the
aerofoil dominated by di!ering pressure gradient and unsteady e!ects. The last attribute is also
a novel feature of the present study and is relevant to blu!-body #ow "elds. The computed #ow
"eld shows that the #ow achieves a statistical stationarity even though the overall #ow is
chaotic and aperiodic. ( 2001 Academic Press
1. INTRODUCTION

FLUID FLOW TRANSITION from the laminar to the turbulent state usually begins because of the
receptive nature of the underlying shear layer. The ability of the shear layer to respond and
amplify certain frequencies and wavelengths of present disturbances (noise) is distinct from
the bu!eting problem. After the initial receptivity stages, the generated disturbance "eld is
ampli"ed under proper conditions. When the background noise is small in magnitude,
various three-dimensionalities and nonlinearities cause this ampli"cation process to satu-
rate, leading to turbulence. However, when the level of disturbance is very high*as in the
present case*a by-pass transition is observed, where the usual ampl"cation of unstable
Tollmien}Schlichting waves is by-passed, in which case, various other mechanisms are seen
to exist [see, e.g., Wu et al. (1999) and Sengupta et al. (1999)].

The power spectra of turbulent #ows are broadband, and are known to be aperiodic, i.e.,
neither stochastic nor multiply periodic (Vastano & Moser 1991). Since dissipative nonlin-
ear systems also display aperiodic motion in phase-space attractors, it is quite natural to
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investigate such systems using deterministic chaotic tools. The veri"cation of the above
ideas "rst came in a series of experiments on internal #ows, namely for the Taylor}Couette
#ows by Gollub and co-workers (Gollub & Swinney 1975; Fenstermacher et al. 1979).
Similar evidence has been displayed for other internal #ows through numerical simulations
of the Navier}Stokes equation depicting uniform #ow past bodies without the presence of
any extrinsic noise. These include the Taylor}Couette #ow by Vastano and Moser (1991)
and #ow in cascades by Fortin et al. (1987).

Pulliam & Vastano (1993) were the "rst to report low-dimensional chaotic behaviour of
an unforced open #ow. In that numerical study the #ow past a NACA 0015 aerofoil at
a large angle of attack (a"303) was investigated to determine the bifurcation sequence as
Reynolds numbers were increased from very small values up to 3000. Also, some quantitat-
ive measure of chaos of the aperiodic #ow was presented via time delay phase-space
portraits and Lyapunov exponents. In earlier work, Fortin et al. (1987) performed "nite-
element simulation of incompressible #ow in a cascade. However, the grid used was too
coarse to separate the physical sequence of bifurcations from numerical e!ects. The studies
of both Pulliam & Vastano (1993) and Fortin et al. (1987) indicated the sequence of
bifurcations and the presence of newer and newer frequencies in the frequency spectrum. In
these studies the presence of noise was not considered, and the sequence of bifurcations
leading to turbulence was triggered by computational round-o! and other numerical errors.
For the cascade #ow, the "rst periodic doubling was observed at Re"1200 with the next
period doubling at Re"1900. At Re"2200 the frequency spectrum was continuous. For
the external #ow problem in Pulliam & Vatsano (1993), a much more detailed study
revealed the "rst period doubling at Re"1075. Figure 2 of the same reference indicates
detection of up to period-64 solution for Reynolds numbers between 1580 and 1583. It is to
be mentioned here that the grids used by Pulliam & Vastano (1993) were much "ner
(coarsest grid of size 169]49) as compared to 8]49 grid used in Fortin et al. (1987). After
the period-64 motion, as the Reynolds number was further increased, a series of chaotic
states interspersed with periodic windows was detected in Pulliam & Vastano (1993).
However, it was stated in Pulliam & Vastano (1993) that the bifurcation sequence some-
what changed when "ner grids (of size 369]89 and 849]161) were used. The bifurcation
sequence and transition to chaos changed further when higher-order accurate TVD
schemes were used. However, the importance of these studies lay in the fact that period-
doubling and the bifurcation sequence were demonstrated with the help of the full Navier}
Stokes equations and not by model di!erence equations, as employed in the study of chaotic
dynamics.

It is often stated that the #ow at high Reynolds numbers ought to be three-dimensional
because 3-D #ows have the known energy cascade mechanism via vortex stretching. At the
same time previous 2-D numerical simulations, including the present one, clearly demon-
strate that energy can cascade via period-doubling bifurcations for 2-D #ows. The role of
nonlinearity in generating vortices of smaller scale from shear layers characterized by
large-scale vorticity was also demonstrated by Legras & Dritchel (1993) in the context of
a discrete vortex method computation of inviscid #ows in two dimensions. The phenom-
enon of vortex stripping, alluded to above, is a clear demonstration that there are indeed
other energy cascade mechanisms. In another study related to the receptivity aspect of zero
pressure gradient #ows to free-stream disturbances, it has been demonstrated by Sengupta
et al. (1999) that, even in the context of linearized dynamics, the viscous #ow shows an
energy cascade via dispersion e!ects even though the #ow may not be unstable.

All the above numerical works, except the one by Sengupta et al. (1999), relate to intrinsic
dynamics, i.e. there are no disturbances driving the #uid dynamical system. No e!ort has
been made to date to study the extrinsic dynamics of a #uid dynamic system (stochastic
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system) governed by the Navier}Stokes equations. By de"nition, a stochastic system is one
that is subjected to random external forcing. Although such studies have been made via the
direct interaction approximation (DIA), that can be viewed as asymptotically exact solution
of the Navier-Stokes equation [see Frisch (1995) for a discussion], the interest here is to
study numerically the #ow past an aerofoil at large angles of attack and at higher Reynolds
numbers in the presence of FST. The present choice of Reynolds numbers (35 000 and
100000) is deliberate, as the e!ect of nonlinear terms is to render any periodic solution
unstable for certain parameter choices (in this case the Reynolds number). Although the
nonlinearity does not guarantee chaos, it does make the existence of chaos possible.

The problem of diagnostics of oncoming noise "elds and impurities is important, as the
strong inhomogeneities of the mean #ow produce signi"cant straining of the disturbance
"eld as they approach the body and the shear layer. It is expected that the present study will
reveal some of these important e!ects of the #ow. In an actual #ow-"eld the omnipresent
background noise like FST actually triggers transition to turbulence. For example, in
compressor and turbine cascades it is common to "nd high levels of (1}5%) turbulence
intensity. This e!ect has not been studied earlier, despite its tremendous practical import-
ance, perhaps due to the absence of a proper model of FST along with an accurate Navier}
Stokes solver that does not su!er from numerical uncertainties. In Section 2, a new model
for FST based on a Moving Average (MA) time-series method is proposed. The governing
equation and the adopted numerical methods for the accurate higher-order upwind scheme
are brie#y discussed in Section 3. The results and discussion are given in Section 4 followed
by conclusions.

2. MODELLING FREE-STREAM TURBULENCE

There is a genuine need to model the background noise that is omnipresent in any #uid
dynamic system. For aerospace applications these noise sources are (i) acoustic, (ii) vortical
and (iii) entropic in origin. In the present exercise, the acoustic and vortical components of
the background noise are modelled*as they are important for incompressible #ows. There
has been some limited success, reported by Atassi (1994), in the development of aerodyna-
mic theories of streaming motions around bodies with unsteady vortical and entropic
disturbance. However, these studies are essentially limited to linear and/or inviscid #ows.
The turbulence intensity considered in this present study is 5%. This value is typically on
the high side for gas turbine applications, where inclusion of both nonlinear and viscous
e!ects is mandatory.

If one measures the velocity signal in a wind tunnel and subtracts the mean #ow
component, then the signal appears to be highly disorganized and the detailed behaviour
appears intractable. Despite this, it is possible to see some organization when the statistical
properties are viewed. In Figure 1 the velocity signal from the S1 wind tunnel of ONERA is
reproduced along with the corresponding histograms from Frisch (1995). These data have
been treated as typical of similar wind tunnel facilities. Both the histograms have identical
statistical properties, despite their di!erent time origin, pointing to the utility of statistical
information of the signal. Here the statistics is used to develop a time series to model the
FST by following a standard moving average (MA) time-series method that can be found in
Fuller (1978).

The disturbances represented by high-frequency #uctuations are due to many reasons
and, if the contraction ratio upstream of the test-section is not high, then the disturbance
"eld (which is the FST) is isotropic. Based on this assumption and the invariance of the
noise statistics from the histogram in Figure 1, the vorticity that enters the domain of
interest through the in#ow boundary can be calculated.



Figure 1. Streamwise #uctuating velocity data for ONERA S1 wind tunnel shown for two di!erent
time intervals.
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From the histogram the "rst four moments are calculated from
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where f (x) is the function depicting the discrete data in the histogram in Figure 1. In this
equation the superscript indicates the exponent of the shifted function. The shift is per-
formed by the mean value of the function. The coe$cient of skewness and kurtosis of the
histogram are given by
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In the development of the model, an important observation is that the third moment
(skewness) calculated from the histogram is negligibly small. For one of the time series, it is
a small positive number and for the other time series this is a small negative number. It has
been shown in Frisch (1995), that the skewness is a measure of vortex stretching and, for
homogeneous turbulence, the skewness ought to be negative (Batchelor & Townsend 1947)
if the time rate of change of enstrophy due to nonlinear interactions is positive. Here, to
generate a synthetic time series for the velocity components, at the in#ow boundary points,
the third moment is treated as zero. The generated time series for the velocity components
at the in#ow boundary, matched the coe$cients given by equations (1)}(3). In the present
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work, the standard moving average (MA) model of order one, as given in Fuller (1978), has
been used:
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's are given by a normal distribution of zero mean and standard deviation p. From

the given histograms, shown in Figure 1, one can calculate the four moments of the input
noise signal at the in#ow boundary and they can be equated to the four moments of the time
series given by equation (4). Thus one has two equations for the two unknowns a

1
and p.

The time series given by (4) is valid only when noise signals are symmetric. To consider noise
models with nonzero skewness, one has to develop models that are inherently asymmetric.

The various moments of equation (4) are given by
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The time series, represented by Equation (4), produces isotropic velocity #uctuation due to
FST. It is furthermore assumed that during the initial phase, when the oncoming #ow is
accelerated, the noise will not be stationary and the instantaneous standard deviation of the
velocity signal will follow (a form) dictated by equation (11).

3. GOVERNING EQUATION AND NUMERICAL METHOD

The governing equation of motion for the 2-D #ow is given by the Navier}Stokes equations.
In the stream function}vorticity formulation, these are given by
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being the "nal free-stream speed and c the chord of the airfoil.
The choice of the (t!u) formulation is (for achieving) higher accuracy. The existence of
stream function satis"es mass conservation everywhere in the #ow-"eld and thereby
removes one of the major sources of error of solving the Navier}Stokes equation in
primitive variable formulation. Also, such a formulation can be computed fast as pressure is
not computed explicitly. The pressure "eld, whenever necessary, can be computed by
solving the pressure Poisson equation separately}as has been done in Nair and Sengupta
(1997) for elliptic cylinders.

One of the major aims here is to obtain time-accurate solution of the Navier}Stokes
equation when the free-stream start-up process is well de"ned. Morikawa & Gronig (1995)
have reported experimental results at Re"35 000 for #ow past a NACA 0015 aerofoil for
which the tunnel test-section speed history was provided. The free-stream speed achieved its
"nal value (;
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Equations (9) and (10) are solved in an orthogonal transformed plane and they are given by
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where h
1

and h
2

are the scale factors of the orthogonal transformation in the azimuthal and
wall-normal (m, g) directions of the chosen O-grid topology. The grid generation strategy
and details are given in Nair & Sengupta (1998) and is not repeated here. To solve equation
(12), a grid is chosen in such a way that the truncation and aliasing errors (in evaluating the
self-adjoint product terms) are minimized. The role of aliasing error in a linear equation has
not been reported in the literature before for "nite di!erence and "nite volume computa-
tions. A look at (12) reveals that this is due to evaluation of the product terms on the
left-hand side and thus depends on the scale factor (h

1
, h

2
) distribution in the transformed

plane. Equation (12) is solved by the alternate direction implicit (ADI) method [see Nair
& Sengupta (1997) for details]. The vorticity transport equation (13) is solved by discretiz-
ing the nonlinear convection terms by higher-order upwinding, while the dissipation terms
are discretized using a second-order central di!erence scheme. The time advancement is by
Euler time stepping in an explicit manner, for reasons of numerical stability and accuracy.
For the accurate simulation of the Navier}Stokes equations one must choose a numerical
method that is neutrally stable and which in turn requires the choice of very small CFL
number or time step. In the present set of computations the time step has been restricted to
*t"10~5 for this reason. The method of higher-order upwinding is equivalent to large
Eddy simulation, since the third-order upwinding enhances the spectral resolution by 44%
as compared with the usual second-order schemes and this aspect has been discussed in
Sengupta & Nair (1999).

The computational domain and the close-up view of the O-grid used, of size 301]401,
are shown in Figure 2(b). This grid was used for all computations except the case for
Re"35 000 for which another grid of size, 231]301, was used. These grids in the wall-
normal direction are much "ner than the one used by Pulliam & Vastano (1993), because of
the enhanced requirements of resolution at higher Reynolds numbers of present simula-
tions. This, together with the fact that higher-order upwinding has been used, provides high
spectral accuracy of solutions at higher Reynolds numbers. The noise model described in
the previous section allows one to "x the value of the time-dependent boundary conditions
at the in#ow of the computing domain shown in Figure 2(a). This is given by the following
Neumann boundary conditions at the in#ow:
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where u
=

(t) is given by (11) and the #uctuating components of velocity (u@(t), l@(t)) are given
by the noise model described in the previous section, equation (4). The #uctuating distur-
bances that are introduced through the in#ow boundary, subsequently, evolve as governed
by the Navier}Stokes equations. There are no assumptions made for the noise model,
except that no length scale of the FST is incorporated. This can be included if the
information on length scale is available. The boundary condition for stream function on the
surface of the aerofoil is given by

t"const (15a)

On the cut (AF and CD) the periodic boundary conditions apply for all variables. The noise
model also "xes the time-dependent vorticity boundary condition on the in#ow as a Dirich-
let boundary condition. For equation (13), at the out#ow boundary, the di!usion operator
is switched o!, i.e. locally a Euler equation is solved.

The no-slip boundary condition on the wall "xes the wall vorticity, and this works as the
major vorticity production term for the vorticity transport equation. This wall vorticity is



Figure 2 (a). The schematic of the #ow "eld with in#ow and out#ow boundary indicated.
(b) Close-up view of the used O-grid of size (301]401) around NACA 0015. (c) The location of points

where the velocity and vorticity data are stored.
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calculated from equation (12) by applying the no-slip condition. The resultant expression
for the time-dependent wall vorticity is given by
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4. RESULTS AND DISCUSSION

The e!ect of FST is studied for unsteady viscous #ow around NACA 0015 via the solution
of the full Navier}Stokes equations for Re"3000, 35 000 and 100 000 at various angles of
attack. The points at which the azimuthal and wall-normal velocity components and
vorticity were stored, as a time series for the Reynolds numbers, are shown in Figure 2(c)
and the corresponding coordinates are tabulated in Table 1. The points are chosen to
provide insight into di!erent #ow regimes. For example, for Re"35 000, Points 1, 4}7 are
within the attached shear layer. Point 2 is located within the separated shear layer. Points 3,



Figure 2 (continued)

TABLE 1

Point No. x y

Sampling points for the Reynolds number"35 000
1 !2)6175]10~4 7)2478]10~3
2 0)9652 8)1048]103
3 1)0012 4)5535]10~5
4 0)5471 !6)2967]10~2
5 1)4906]10~2 !2)7320]10~2
6 1)0299]10~3 !1)0780]10~2
7 !1)2570]10~3 !1)1790]10~2
9 1)0602 !8)0034]10~3

10 1)0602 8)0034]10~3

Sampling points for all other Reynolds numbers

1 0)9999 0)0008
2 0)3455 !0)0745
3 1)0013 0)0000
4 0)0289 0)0363
5 0)0028 !0)0142
6 1)0074 0)0002
7 1)0075 0)0000
9 1)0055 0)0000

10 1)0098 0)0000

678 T. K. SENGUPTA



EFFECT OF FREE-STREAM TURBULENCE 679
9 and 10 are located in the near wake. Among Points 1, 4}7, the choice of location
was dictated by the fact that each of these locations experiences a di!erent pressure
gradient. These have been chosen to explore whether the space}time dependence of
the solutions at all these points can be separated simultaneously, so that reduced-
order modelling for aeroelastic computations can be possible for blu!-body #ows (Dowell
1996). The time series have been stored at these points to "nd the time limit up to which
the computation should proceed to achieve statistical stationarity of the data. No e!ort
has been made to calculate the time-dependent loads experienced by the aerofoil. The
sampling rate of data in all the cases has been taken as *t

s
"0.002. These computations

are very expensive; for example, for the case of Re"100 000, the total computation time
is of the order of several thousands of CPU hours on SGI origin 200 when computed up
to t"250.

It is well known that low-dimensional nondissipative dynamical systems often display
chaos, when some parameters are increased. The dynamical system theory as applied to
#uid dynamics assumes intrinsic dynamics without any need to consider external noise. The
present exercise is undertaken to study the extrinsic dynamics of #ow past the aerofoil at
high angles of attack, with respect to the e!ects of FST in the transitional and turbulent #ow
regimes. Even when the #ow is given by intrinsic dynamics, the FST is needed to prevent the
dynamical system from being trapped in one of many possible attractors with small basin.
The statistical properties of the solution depend on the basin on which the initial and
boundary conditions belong.

The case of a NACA 0015 airfoil at a"203 without any noise was computed by Pulliam
& Vastano (1993) for Re"3000. To distinguish between extrinsic and intrinsic dynamics
the same case has been computed here with 5% FST. For this case, the same "ne grid
that is employed for Re"100 000 is used. An additional case at a"303 was investigated
for Re"3000. Only the results are summarized, without showing any "gures. It was
noted that the presence of FST produces lower levels of disturbance at Point 1,
while at Point 2, which is in the vicinity of the front stagnation point, the response-
amplitude is least with and without noise. Furthermore, the bandwidth of response is
wider for the case without noise. The Lyapunov exponents are shown in Table 2, for
Re"3000 and 35 000. The Lyapunov exponents have been calculated following the
method of Wolf et al. (1985). The physical implications and the evaluation methods
of Lyapunov exponent are also given in Baker & Gollub (1996). All the cases demon-
strate the #ow to be chaotic, as the Lyapunov exponents are all positive with the exception
of Point 2, for Re"3000 and a"203, where the maximum Lyapunov exponent is found
to be negative. This is consistent, since the point is located in the favourable
pressure gradient zone for which the #ow is stable. For a"203, the maximum Lyapunov
exponents range from !0.0236 at Point 2 to 0.1163 at Point 6. However, when the angle
of attack was increased to 303, the maximum Lyapunov exponents increased at all points
and are of the same order of magnitude. For Re"35 000 the average Lyapunov exponent
is lowest for Points 4 and 5.

Instead of showing the time series of all the points for all the cases, only the velocity
components at some selected points are shown for the Re"100 000 and a"303 case.
Figure 3(a) displays the u-component time series at all the nine points whose coordinates
are given in Table 1. Points 3,9,6,7 and 10 are near a line along the streamwise direction and
hence this velocity component denotes the normal velocity component, while for Points
1,2,4 and 5, this is the streamwise velocity component. For Point 5, which is in the vicinity of
the front stagnation point, this velocity component exhibits large unsteady excursions over
longer time intervals. Point 2, which is in a region of negative (favourable) pressure gradient
exhibits a quiescent #ow condition.



TABLE 2
Lyapunov exponents at di!erent locations given in Table 1

Point no. With noise Without noise
a"203 a"303

Lyapunov exponent (j) for Re"3000
1 0)0873 0)1633
2 !0)0236 0)1317
3 0)1036 0)1876
4 0)0771 0)1255
5 0)0629 0)1597
6 0)1163 0)1805
7 0)0943 0)1888
9 0)1123 0)1657

10 0)1086 0)1669

Lyapunov exponent (j) for Re"35 000

Point no. a"303

1 0)2564
2 0)3628
3 0)2128
4 0)3631
5 0)3172
6 0)3163
7 0)3388
9 0)2580

10 0)3998
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The velocity component time series can be expressed as

u(r, t)"
1

2n P(uL (r, u)e~*utdu

with uL (r, u) as the Fourier amplitude of the signal and can be obtained by fast Fourier
transform (FFT). The FFT has been obtained using the FFTW, version 2.0.1 software
developed by Frigo & Johnson (1997). In Figure 3(b) this amplitude is plotted as a function
of log

10
(u). The choice of logarithmic scale is to highlight the lower frequencies. It is to be

noted that the FST at in#ow excites up to u"500*the Nyquist limit corresponding to the
sampling rate of the time series. It is known that the long-time behaviour is determined by
the low-frequency content. The near absence of Fourier amplitude at Point 2 implies the
absence of noise and chaos. Similarly, for Point 5, the low-frequency amplitude is predomi-
nant and the amplitude is almost zero beyond u"10. The FFT of the signal for Points
1 and 3, indicates the behaviour of the shear layer under the action of an adverse pressure
gradient. The constant tail of the response, at high u, can be detected at these two points.
The presence of a solid boundary at Point 1, attenuates the high-frequency component, as
compared to constant amplitude response for Point 3 at higher frequencies. For Point 4, the
c

Figure 3 (a). The curvilinear u-component of velocity at the sampled points shown as a function of
time. (b) The Fourier transform shown against frequency for the time series of (a).
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local #ow acceleration attenuates the amplitude at higher frequencies above u"30. The
FFT of the time series for the Points 6, 7, 9 and 10 have been plotted in an enlarged scale, as
compared to the other points. The response in the near-wake increases in the downstream
direction as one moves from Point 3 to Point 10. Also, as one moves downstream, higher
and higher frequencies are excited with higher amplitude. However, Points 7 and 10 that are
neighbouring points have identical frequency bandwidth of the response.

The receptivity of the #ow is such that the circular frequencies below 100, are only
ampli"ed. The constant tail in the FFT data beyond 100 is due to the input FST spectrum,
i.e. the #uid dynamical system shows bu+eting at higher frequencies. This also shows that
the adopted numerical scheme is neutrally stable for even the highest resolved temporal and
spatial scales. The exact receptivity of the #ow is determined by the local shear layer
properties. The band of frequencies that are ampli"ed keeps increasing as one moves
towards the trailing edge. This can be ascertained by comparing the Fourier amplitude of
Point 1 with that of Point 4*the receptive frequency-band for Point 1 is almost double that
of Point 4. The constant-amplitude tail, at higher frequencies, also increases as shear layer
Figure 4 (a). The curvilinear v-component of velocity at the sampled points shown as a function of
time; (b) The Fourier transform shown against frequency for the time series of (a).



Figure 5. The Lyapunov exponent as a function of time for all the sampled points.
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thickness increases, implying growth of disturbances in both space and time, for separated
and free shear layer #ows. It is to be noted that the bu!eting amplitude for Point 3 is
manifold as compared to that for Point 1. By looking at the excited frequency-bands, one
can see two sets of points. Points 1, 3 and 4 belong to one, while all the points in the
near-wake, belong to the other set*with Point 2 belonging to neither of the groups.
Comparing the FFT of velocity-component signals for Points 5 and 4, one can understand
the role of adverse pressure gradient. At Point 5, the #ow is accelerated and one can see that
the very low-frequency amplitudes are dominant and the receptive frequency-band is much
narrower compared to that of Point 4. Point 2 has identical receptive frequency-band as
compared to Point 5; however, the amplitude is 10 times lower for Point 2, due to its
location close to the front stagnation point.

In Figure 4(a, b), the v-component time series and its FFT, are shown for the near-wake
points. At these points, this component of velocity actually indicates the streamwise
component of the response. The response is seen to be highly intermittent.

In Figure 5 the Lyapunov exponents, as a function of time, are displayed for all the
sampled points. After an initial transient period, this exponent at all points reaches
a steady-state small positive value, thus implying the #ow to be chaotic at all points except
Points 2 and 5, where the Lyapunov exponents are very small. Thus, Point 5 displays
nonchaotic unsteadiness while Point 2 displays quasisteady nonchaotic behaviour. These
"gures also display that after t"80, the Lyapunov exponents do not change with time.



Figure 6. The Fourier transform of u-component of signal at Point 3 for (a) the time series up to
t"150; (b) the time series up to t"250.
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Thus, although the #ow is strongly time dependent, a simulation up to t"80 is enough to
characterize its chaotic nature.

There is another aspect of unsteady #ows which requires emphasizing. When one
computes such a #ow, it is necessary to "nd the time-period over which the #ow should be
computed, as the #ow is aperiodic. To address the question, one should look for statistical
stationarity of all #ow variables. For this purpose, the FFT of the time series for the
u-component is shown in Figure 6 for Point 3, for two di!erent lengths of the signal, for the
Re"100 000 and a"303 case. The remarkable similarity, over a moderate and higher
circular frequency range, of these two FFTs indicates that the dynamics is neither dissi-
pative nor unstable in the numerical sense. The di!erences in the low-frequency range are
due to the length of the signals; the longer the computational time, the more visible the
lower frequencies will be. It establishes that taking the time series up to t"150, is adequate
to represent the frequency selection mechanism, i.e. the receptivity of the #ow.

4.1. EFFECT OF ANGLE OF ATTACK FOR Re"100 00

Flow behaviour at this Reynolds number is investigated for an additional angle of attack
(a"53). It is seen from the time series that Points 1, 3, 4, 7, 9 and 10 exhibit intermittency for
a"303. At the lower angle of attack, the response is modulated at these points. Some
representative "gures are shown in Figure 7, for the g-component of velocity, the FFT and
the time dependence of the Lyapunov exponent. Points 3 and 10, being in the near-wake,
c

Figure 7. The v-component of velocity; its Fourier transform and Lyapunov exponent for Points
2,3 and 10 for Re"100 000 and a"53.
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Figure 8. Correlation dimension for #ow past NACA 0015 airfoil for a"303 and Re"100 000 for
FST level of 5% for Point 1 with maximum embedding dimensions: (a) ED"20 and (b) ED"500.
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show similar disturbance spectra with the magnitude increasing in the downstream direc-
tion for both angles of attack. Another distinct feature for the lower angle of attack case is
that the output is more broadband. Also, Point 2 shows certain time intervals when the
Lyapunov exponents take negative values for the a"53 case, i.e. during these time intervals
the #ow is temporally stable.

The calculated #ows, for chosen parameter values, are chaotic and the degree of chaos
can be obtained from calculated dimensions of the system. The correlation dimension, d

c
, is

the most physically suitable one to characterize the chaotic dynamical system. It is obtained
as a slope of correlation integral (C) evaluated from the embedded vector plotted against the
separation distance (r), as shown in Figure 8, for two values of chosen embedding dimen-
sion. Both cases reveal that the value of d

c
is approximately equal to 600. The practical

reason for calculating this dimension is to reduce the governing partial di!erential equa-
tions to a set of ordinary di!erential equations in time}known as reduced order modelling
(Dowell 1996). This can be done either through eigenvalue and eigenvector expansion or
through a proper orthogonal decomposition (POD) method considering only the most
energetic modes. There can also be the alternative statistical route, where the probability
distribution function (PDF) of the velocity signal can be used to reproduce a time series by
statistical methods as we have done for synthesizing the time series for the FST at the in#ow
boundary. The latter approach can be gainfully employed for the purpose of #ow control
also.

4.2. THE INTERMITTENCY FACTOR

Having obtained the time series at the sampling points over a time period, when e!ects of
transients have decayed, it is possible to estimate the intermittency factor at these points. To
distinguish between the laminar and the turbulent nature of the #ow at a given spatial
location one needs to have a good discriminator between the two types of #ow. This then
becomes a problem of signal processing and was tackled previously by experimentalists.
While this is discussed in Hedley & Ke!er (1974), Ramesh et al. (1996) used a simpler
method of calculating the intermittency distribution for a three-dimensional constant-
pressure, diverging #ow, by obtaining the PDF of the squared second time-derivative of the
velocity signal. In this work following the same method, the second derivative of the signal
is evaluated by a fourth-order accurate method to minimize undue attenuation of the signal
at higher frequencies. This is superior to the second-order method that "lters the frequency
spectrum at higher frequencies. For the same reason, it is also known that instead of the



Figure 9. The time variation of Du ("d2u/dt) constructed from the vorticity signal for
Re"100 000 and a"303 for some representative points.
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velocity signal, if one uses instantaneous wall shear stress then the distinction between the
laminar and the turbulent #ow becomes sharper (Schneider 1995). Here both the velocity
and vorticity (which is proportional to the local shear stress) time series have been used to
compute the intermittency factors at various sampling points, but only the vorticity signal
results are shown. In Figure 9, the time variation of Du"d2u/dt, for some of the sampling
points is shown for the Re"100 000 and a"303 case. In Figure 10, the PDFs are shown
for some of the points and the distinct break in the curves indicates the threshold level
discriminating the turbulent from the laminar #ow. The frequency of occurrence of any
event is plotted along the ordinate as a function of the exponent of the value of Du (to the
base ten). In calculating the frequency of occurrence, a bin-width of 1)0% has been used
around the chosen central values. The overall appearance and the values of PDF are
sensitive to the choice of the bin-width, but the break in the curve indicating the threshold of
turbulence more or less remains the same and so does the intermittency value. Note that
Points 2 and 4 are near the front stagnation point and the most likely Du values are three to
four times lower at these points compared to other points*except Point 5, where a very
high value of Du is achieved because of strong local acceleration. For Point 1, the threshold
is close to 1016>75, while the #ow is not turbulent at Point 2. Point 3, being in the near-wake,
the PDF indicates an earlier break at 1015>90*but this is not a very clear one. Also note
that the highly intermittent signal shows up in terms of a long tail beyond 1017, and this is
due to the already-mentioned bu+eting in the frequency spectrum. For Point 4, which
is located near the maximum adverse pressure gradient, the threshold is at 1015>5; Point 5 is
also characterized by low-frequency oscillation and once again the #ow is not turbulent.
Points 6 and 7 are also in the near-wake but are further downstream than point 3 and for



Figure 10. The probability distribution function (PDF) for the computed vorticity "eld for the data
shown in Figure 9.

TABLE 3
Intermittency factor for Re"100 000 and a"303

Points Threshold Intermittency factor

1 1016>75 0)1233
3 1015>90 0)1384
4 1015>5 0)0528
6 1017>1 0)0832
7 1017>1 0)0877
8 1015>5 0)1210
9 1017>0 0)0966

10 1017>0 0)0851
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these points the threshold also increases to 1017>1. The threshold values at the sampling
points are indicated in Table 3.

From the information in Figure 10 and the threshold values in Table 3, one can easily
calculate the intermittency factors by using a binary decision, i.e. one can create a function
I(t) which takes a value equal to one if the instantaneous Du value is greater than the
threshold value, and is otherwise set equal to zero. Once this function I (t) is evaluated, the
intermittency factor is obtained from

c"
1

¹ P
T

0

I (t) dt , (15)
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where ¹ is the total sampling time. The calculated intermittency factors are also shown in
Table 3. The threshold values are not the same for all the points, because the underlying
shear #ows are qualitatively di!erent and hence for the same reason one cannot use
a universal model for transition for all the points. The fact that the threshold values are not
easily detected, is due to the low values of Reynolds number for which computations are
performed. For the present exercise it is only for Points 4, 7 and 10 that the thresholds are
clearly detected from the PDF. The intermittency factors can also be obtained from the
same time series by progressively taking longer and longer time segments, always starting
from the beginning. In doing so, it was found that the intermittency factors did not change
anymore beyond t"140. This is in conformity with the statistical stationarity that was
discussed earlier. Also, the values of intermittency obtained were in the predictable range
depending on the location and the nature of the shear layer.

5. CONCLUSIONS

Unsteady #ow past a NACA 0015 aerofoil section is investigated for moderate Reynolds
numbers, at high angles of attack, by solving the full Navier}Stokes equations in the
presence of Free Stream Turbulence, which is modelled by a Moving Average time-series
model. This is a novel approach for studying the e!ect of FST on blu!-body #ows in the
transitional #ow regime, and the numerical results should be viewed as the "rst set of very
accurate simulation recording the e!ect of FST in triggering by-pass transition. Another
reason for undertaking the present research was to explore the possibility of using reduced-
order modelling of blu!-body #ows for aeroelastic applications. This was attempted by
using dynamical system tools and it is shown that the correlation dimension is very
high*of the order of six hundred, i.e. the governing partial di!erential equation can be
replaced by that many coupled ordinary di!erential equations. Therefore, this does not
appear to be an attractive proposition. Physically, it is also seen that di!erent parts of the
#ow past the aerofoil at high angles of attack show entirely di!erent #ow behaviour; this
then precludes the eigenfunction expansion route. In this exercise the intermittency due to
a very large number of bifurcations su!ered by the #ow in the presence of FST is computed
and this information can be used to embed transitional #ow information in turbulence
models.
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